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Grid-independent large-eddy simulation in
turbulent channel flow using three-dimensional

explicit filtering

By Jessica Gullbrand

1. Motivation

The most commonly used Large Eddy Simulation (LES) approach is the implicitly
filtered approach. In implicitly filtered LES, the computational grid and the discretization
operators are considered as the filtering of the governing equations.Thereby the turbulent
flow field is divided into grid resolved and unresolved scales, where the unresolved scales
must be modeled.

When explicit filtering is used in LES, the filtering procedure of the governing equations
is separated from the grid and discretization operations. The flow field is divided into
resolved filtered scale (RFS) motions, and subfilter-scale (SFS) motions. The SFS is itself
divided into a resolved part (RSFS) and an unresolved part (USFS) (Zhou et al. 2001);
see figure 1. The RFS motion is obtained by solving the filtered Navier-Stokes equations.
The RSFS motions can be reconstructed from the resolved field and occur due to the use
of a smooth (in spectral space) filter function. The USFS motions consist of scales that are
not resolved in the simulation and need to be modeled. The explicitly filtered governing
equations were recently studied by Carati et al. (2001) in forced isotropic turbulence.

The smallest resolved scales are often used to model the turbulence-closure term in
LES, and therefore it is important to capture these scales accurately. The accuracy of the
LES solution can be increased by using high-order numerical schemes. Although high-
order methods treat the important large energy-containing scales more accurately, the
small resolved scales would still be contaminated with truncation errors when using non-
spectral methods. These errors can be reduced or eliminated by using explicit filtering
in LES (Lund 1997). This can be achieved either by using a large ratio of filter width to
cell size, or by using a higher-order method, in which case the ratio need not be so large.
In recent a priori studies by Chow & Moin (2003), a minimum ratio of filter width to
cell size was determined to prevent the numerical error from becoming larger than the
contribution from the turbulence-closure term. They concluded that with a fourth-order
scheme a filter width of at least twice the cell size should be used, and for a second-order
scheme the filter width should be at least four times the cell size.

Using explicit filtering and high-order numerical schemes requires the filter functions
to be commutative to at least the same order as the numerical scheme. The differenti-
ation and filtering operations must commute, to ensure that the filtered Navier-Stokes
equations have nearly the same structure as the unfiltered equations. In general, the
operations do not commute when a variable filter width is used, as is needed in inho-
mogeneous turbulent flows. Ghosal & Moin (1995) showed that the commutation error
might overwhelm the contribution from the turbulence-closure term. Therefore, this error
must be reduced or eliminated to avoid significant effects on the LES solution. A general
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theory for constructing discrete high-order commutative filters was proposed by Vasilyev
et al. (1998).

Most of the previous studies of LES using explicit filtering in turbulent channel flow
have used filtering in two dimensions (the homogeneous directions) and only a few studies
have applied filtering in all three dimensions. We limit our discussion to investigations
performed using smooth filter functions. Two-dimensional filtering was investigated by
Moin & Kim (1982), Piomelli et al. (1988), Najjar & Tafti (1996), and Gullbrand & Chow
(2002) among others. Studies using three-dimensional filtering were performed by Cabot
(1994), Gullbrand (2001), Winckelmans et al. (2001), and Stolz et al. (2001). However,
most of the studies using three-dimensional filtering did not focus on minimizing the
effect of the numerical errors. If care is not taken to reduce the numerical errors, they
may be larger than the contribution from the turbulence-closure models. Therefore, it
will not be possible to separate the numerical effects from the performance of turbulence-
closure models. Cabot (1994), for example, used a second-order finite-difference scheme
and second-order commutative filter functions with a ratio of two between the local
filter width and the local cell size. The error from the second-order scheme is proba-
bly larger than the turbulence-closure contribution due to the small ratio of the filter
width to cell size used and, in addition, a second-order commutation error is present.
Winckelmans et al. (2001) used a high-order finite-difference scheme (fourth-order) but
applied a second-order commutative filter with a ratio of filter width to cell size of VA6.
The filter functions used introduce a commutation error of second-order into the simu-
lations. A spectral method was used by Stolz et al. (2001), together with fourth-order
commutative filter functions with a filter-grid ratio of approximately 1.5. The use of spec-
tral methods clearly reduces the numerical errors in the simulation when compared to
the studies previously mentioned. However, spectral methods are not considered in this
study. Gullbrand (2001) used fourth-order commutative filter functions, with a ratio of
two between the local filter width and the local cell size, in a fourth-order finite-difference
code. The commutation error is then of the same order as the numerical scheme, which
is of higher order than the turbulence-closure contribution. According to the study by
Chow & Moin (2003), the filter-grid ratio used ensures that the contribution from the
turbulence-closure term is larger than the numerical errors. Thus, a fourth-order scheme
using fourth-order commutative filters with a filter width of at least twice the cell size
creates a numerically-clean environment where turbulence-closure models can be tested
and validated.

In this paper, turbulence-closure models are evaluated using the "true" LES approach
in turbulent channel flow. The study is an extension of the work presented by Gullbrand
(2001), where fourth-order commutative filter functions are applied in three dimensions
in a fourth-order finite-difference code. The true LES solution is the grid-independent
solution to the filtered governing equations. The solution is obtained by keeping the filter
width constant while the computational grid is refined (figure 2). As the grid is refined,
the solution converges towards the true LES solution. The true LES solution will depend
on the filter width used, but will be independent of the grid resolution. In traditional
LES, because the filter is implicit and directly connected to the grid spacing, the solution
converges towards a direct numerical simulation (DNS) as the grid is refined, and not
towards the solution of the filtered Navier-Stokes equations. The effect of turbulence-
closure models is therefore difficult to determine in traditional LES because, as the grid
is refined, more turbulence length scales are resolved and less influence from the models is
expected. In contrast, in the true LES formulation, the explicit filter eliminates all scales
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that are smaller than the filter cutoff (k,, in figure 2), regardless of the grid resolution.
This ensures that the resolved length-scales do not vary as the grid resolution is changed.
In true LES, the cell size must be smaller than or equal to the cutoff length scale of the
filter function.

The turbulence-closure models investigated are the dynamic Smagorinsky model (DSM),
the dynamic mixed model (DMM), and the dynamic reconstruction model (DRM). These
turbulence models were previously studied using two-dimensional explicit filtering in tur-
bulent channel flow by Gullbrand & Chow (2002). The DSM by Germano et al. (1991)
is used as the USFS model in all the simulations. This enables evaluation of different
reconstruction models for the RSFS stresses. The DMM (Zang et al. 1993) consists of
the scale-similarity model (SSM) by Bardina et al. (1983), which is an RSFS model, in
linear combination with the DSM. In the DRM (Gullbrand & Chow 2002), the RSFS
stresses are modeled by using an estimate of the unfiltered velocity in the unclosed term
(Stolz et al. 2001), while the USFS stresses are modeled by the DSM. The DSM and
the DMM are two commonly used turbulence-closure models, while the DRM is a more
recent model.

2. Governing equations

The governing equations for an incompressible flow field are the continuity equation
together with the Navier-Stokes equations,

Ouui0u OU + 2  Op 1 92u,
ax- ' at =& Ox Re, x9xj (2.1)

Here ui denotes velocity, p pressure and Re, the Reynolds number based upon friction
velocity, u,, and channel half-width, h. Einstein summation is applied to repeated indices.

In LES, the governing equations are filtered in space. The filtering procedure is applied
to the flow-field variables according to

Ui (X, A, t) = ID G(x, x', A)uj (x', t)dx' ,(2)

where G is the filter function and A is the filter width.
Hence, the filtered governing equations can be written as

8uaj 8U, ap 1 1a2U, a-y.
= 0, - +-Z3 0" 1 - - (2.3)

eýx-- O' t &r3 -9x+ ReT axjaxj  axj

where the turbulent stresses are defined as =ij = Uiuj - uiu'-j. The filtered equations are
not closed because of the nonlinear term ui-u. The approach by Leonard is followed where
the instantaneous velocity field is divided into a filtered velocity and a fluctuating part,
ui = U4 + uý, and the unclosed term can be rewritten to uiuj = (Ui + uý)(Uj + u) =

•u-u + •j. The product of the nonlinear terms (Ui~j) introduces high wavenumbers
that are beyond the wavenumber content of the filtered velocity field (Uj) and beyond
the cutoff of the filter function. To prevent these high wavenumbers to influence the
resolved wavenumbers, the nonlinear terms are explicitly filtered. A potential drawback
of (2.3) is that the resulting equation is not in general Galilean-invariant (Speziale 1985)
provided that the SFS models are Galilean-invariant. In a moving coordinate system, the
resulting equation contains the additional term cja(=i -ui)/axj, where cj is the uniform
translation velocity. The additional term is proportional to the difference between the
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doubly filtered and singly filtered velocity field. This difference will be zero when a sharp
cut-off filter is used, but will not vanish in the general case. The error can be minimized
by constructing the explicit filter function as close as possible to a sharp cut-off filter.
However, the preferable solution is to choose an appropriate turbulence-closure model so
the problem can be avoided. Speziale (1985) showed that using the SSM by Bardina et al.
(1983) with the model coefficient of unity as the turbulence-closure model would solve the
problem. However, a drawback of this model is that it generates higher frequencies and
the desired effects from the explicit filtering approach is thus destroyed (Lund 1997). The
DRM on the other hand has the desired properties and avoids the Galilean-invariance
problem. Description of this model and further discussion are found in the next section.

3. Subfilter-scale models

The turbulent flow field is divided into RFS and SFS motions when explicit filtering of
the Navier-Stokes equations is applied. In figure 1, a sketch of a typical energy spectrum
is shown. The solid line represents the energy captured by a fully resolved DNS, while
the dashed line represents the LES energy. The vertical line at keg shows the filter cutoff
in the LES. The filter cutoff is determined by where the filter function goes to zero and
stays zero (in spectral space), i.e., no wavenumbers higher than the cutoff wavenumber
are resolved in the simulation. The filter cutoff can be seen in figure 2. All wavenumbers
smaller than the filter cutoff wavenumber are resolved in the simulations. However, they
are damped by the filter function and have to be recovered by an inverse filter operation.
This corresponds to the RSFS portion of the energy spectrum. The same terminology for
the RSFS and the USFS was previously suggested by Zhou et al. (2001). In principle, the
RSFS can be exactly recovered, but this is only possible when using spectral methods.
If non-spectral methods are applied, there are numerical errors (NE) associated with the
high wavenumbers and thus the recovered scales are contaminated with errors.

The unresolved portion of the spectrum (the USFS) consists of wavenumbers that are
higher than the filter cutoff wavenumber. The USFS motions need to be modeled. The
vertical lines in figure 1 represent the grid cutoff wavenumbers for two grid resolutions.
The coarse grid cutoff, keg, happens to coincide with the filter cutoff, while the fine grid
cutoff, kfg, is located in the USFS portion of the spectrum. However, the USFS motions
that need to be modeled are the same for the two resolutions, since the filter cutoff
determines the wavenumbers resolved.

To recover the RSFS stresses, the iterative method of van Cittert (1931) is used in
this study. This method was previously used by Stolz et al. (2001) in their approximate
deconvolution procedure to reconstruct the unfiltered velocity field ui from the filtered
field Uj. To fully recover the unfiltered velocity, an infinite number of iterations is needed.
However, since this is not practical in numerical simulations, the unfiltered velocity field
is approximated by a finite number of iterations. By varying this number, different models
can be obtained to model the RSFS stresses.

Here, low-level reconstruction (the SSM) and reconstruction up to level five are used.
Further details of the reconstruction used are found in 3.3. In order to compare the
different RSFS models, the same USFS model (the DSM) is used in all the simulations.
The combinations of RSFS and USFS models used are described below.
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FIGURE 1. Schematic of velocity energy spectrum showing partitioning into resolved filtered
scale (RFS), resolved subfilter-scale (RSFS), and unresolved subfilter-scale (USFS) motions. The
numerical error (NE) region, denoted by ........ , is a subregion of the RSFS. - represents
DNS energy, - - - - LES energy, and - - filter cutoff. The vertical line at k09 represents the
filter cutoff wavenumber, which corresponds to the smallest resolved wavenumber for the coarse
grid. The vertical line at kfg represents the wavenumber cutoff for the fine grid.

3.1. Dynamic Smagorinsky Model

The DSM is a widely-used eddy viscosity USFS model (Smagorinsky 1963):

S= 2 eSij = -2(CA) 2jISjS j, (3.1)

where v, is the eddy viscosity, A the filter width, and the strain rate tensor Sj =

0.5(-8Ujaxj + Oa-uj/xj). The model parameter (CA) 2 is calculated dynamically (Ger-
mano et al. 1991) using the least-square approximation of Lilly (1992). The model pa-
rameter is averaged in the homogeneous directions and is calculated by the same dynamic
procedure as described in the papers previously mentioned. The explicit filtering of the
nonlinear terms is not considered when the model parameter is calculated. The filter-
ing enters only when rij is introduced into the filtered Navier-Stokes equations. Large
magnitudes of negative values of the eddy viscosity are clipped to avoid negative total
viscosity in the simulations, (ve + v > 0), as proposed by Zang et al. (1993).

3.2. Dynamic Mixed Model

Low-level reconstruction of the RSFS stresses can be performed by using the SSM pro-
posed by Bardina et al. (1983). Here the RSFS stress is modeled by the scale-similarity
term and the DSM is used as the USFS model:

Tij = (uu-j - Uj) - 2(CA)21SIS3 j , (3.2)

to form the DMM. The SSM term is discretized with the same numerical scheme as the
convective terms.

3.3. Dynamic Reconstruction Model

High-order reconstruction of the RSFS stress tensor can be achieved by the iterative
deconvolution method of van Cittert (1931). The unfiltered quantities can be derived by
a series of successive filtering operations (G) applied to the filtered quantities with

ui = Ui + (I - G) * U, + (I - G) * ((I - G) * Uj) +... -(3.3)

where I is the identity matrix. The truncation order of the expansion determines the
level of deconvolution, as discussed by Stolz et al. (2001). If the series includes the terms
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explicitly shown in (3.3), it corresponds to reconstruction of level two. An approximate
unfiltered velocity (u*) is obtained by the truncated series. u* is substituted into the
unclosed term u27uj, which results in uiu*. The reconstruction of the RSFS stresses are
used in linear combination with the DSM,

S= iiu - - 2(CA)) 2 1313i, (3.4)

which is called the dynamic reconstruction model (DRM). In the simulations, the same
numerical scheme is used for the convective terms and the RSFS terms. The DRM yields
a Galilean-invariant expression of (2.3), since the nonlinear terms Uj~j on the right-hand
side and left-hand side of the equation cancel each other. A reconstruction series of up
to level five is used in this study.

4. Filter functions

It is important that the explicit filter and the test filter, which is used in the dynamic
procedure of the DSM, have similar shapes, since the dynamic procedure is based upon
the scale-similarity assumption in the Germano identity (Germano et al. 1991). In the
simulations presented here, the same filter function is used in all the simulations. It is
only the filter width that is varied between the simulations. The base filter is a fourth-
order commutative filter function with filter width 2Acg, where A,9 is the grid cell size
for the coarse-grid resolution. The computational domain and grid resolutions used in
the simulations are discussed in section 6. It is not straightforward to determine the
filter width of a high-order filter, and different methods were studied by Lund (1997).
Here, one of the methods suggested by Lund is applied. The filter width is defined as the
location where the filter function reaches a value of G(k) = 0.5. The filter function used
in the simulations was developed by Vasilyev et al. (1998) and is

- 1 9 1 9 1ýi = -- TOi--3 + 9- ii +"•1i + - i+1-- +1-i+3, (4.1)
S2 - 32 - 2 32 (.1

where the filter weights for Oi±2 are zero. The smooth filter function is shown in spectral
space in figure 2. In the near-wall region, asymmetric filters are used in the first three
grid points for the coarse grid in the wall-normal direction. Since the filter width is held
fixed, this corresponds to using asymmetric filters in the first six grid points for the fine
grid.

In the simulations, the ratio of the test-filter width to the explicit-filter width is chosen
to be two, as proposed by Germano et al. (1991) for the DSM. The test filter is used
only in the calculation of (CA) 2 in the DSM, while the explicit filter function is used to
determine the RSFS contribution through either the SSM or reconstruction by the van
Cittert (1931) iterative method. The ratio between the explicit-filter width and the cell
size for the coarse grid is two and for the fine grid, the ratio is four. This preserves the
effective filter width as the grid resolution is increased, as seen in figure 2. The vertical
line at low wavenumber represents the grid cutoff (kcg) for the coarse-grid resolution. The
filter cutoff wavenumber is the same as the grid cutoff for the coarse grid. For the fine
grid, the filter cutoff is held fixed, resulting in a separation between the filter cutoff and
grid cutoff (kfg) locations. The grid-cutoff wavenumbers are also shown schematically in
figure 1. The ratio of two for the filter width and the cell size for the coarse grid was
chosen to prevent the numerical errors from becoming larger than the contribution of the
turbulence-closure model (Ghosal 1996; Chow & Moin 2003).
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FIGURE 2. The base filter function in spectral space and its relation to the computational grid
resolutions. - : filter function, ....... : filter width, ---- : coarse grid resolution, and
--- : fine grid resolution. The wavenumber keg represents the grid cutoff wavenumber for the
coarse grid, while kf, represents the grid cutoff wavenumber for the fine grid.

5. Solution algorithm

In the computational code, the spatial derivatives are discretized using a fourth-order
central-difference scheme on a staggered grid. The convective term is discretized in the
skew-symmetric form (Morinishi, Lund, Vasilyev & Moin 1998; Vasilyev 2000) to ensure
conservation of turbulent kinetic energy. The equations are integrated in time using
the third-order Runge-Kutta scheme described by Spalart, Moser & Rogers (1991). The
diffusion terms in the wall-normal direction are treated implicitly by the Crank-Nicolson
scheme. The splitting method of Dukowicz & Dvinsky (1992) is used to enforce the
solenoidal condition. The resulting discrete Poisson equation for the pressure is solved
in the wall-normal direction using a penta-diagonal matrix solver. In the homogeneous
directions, the Poisson equation is solved using a discrete Fourier transform. Periodic
boundary conditions are applied in the streamwise and spanwise homogeneous directions,
and no-slip conditions are enforced at the channel walls. A fixed mean pressure gradient is
used to drive the flow. The results using the fourth-order computational code is compared
to results from a second-order finite-difference code in Gullbrand (2000) and Gullbrand
& Chow (2002).

6. Turbulent channel flow simulations

The Reynolds number is Rer = 395 and the computational domain is (27rh, 2h, 7rh)
in (x, y, z), where x is the streamwise direction, y the wall-normal direction, and z the
spanwise direction. The computational grid is stretched in the y-direction by a hyperbolic
tangent function

y) = tanh(-(1 - 2j/N 2 )) j=o N 2  (6.1)
tanh()y)

where N2 is the number of grid points in the wall-normal (j) direction and 'Y is the
stretching parameter, which is set to 2.75. Two computational grids are used for the
LES calculations; (64,49,48), which corresponds to one-quarter of the DNS resolution in
each spatial direction, and (128,97,96), which is half the number of DNS grid points in
each direction. The cell size for the coarser grid resolution is Ax+ = 39, Az+ = 26, and
0.4 < Ay+ < 45. The finer resolution corresponds to the cell size Ax+ = 19, Az+ = 13,
and 0.2 < Ay+ < 23. The 'plus' values (wall units) are obtained by normalizing the length
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FIGURE 3. Mean velocity profiles using different turbulence-closure models. o: filtered DNS,
-- : DSM (64,49,48),---- : DSM (128,97,96), --- : DMM (64,49,48), ...... : DMM

(128,97,96),-----: DRM (N=5) (64,49,48), and ---. : DRM (N=5) (128,97,96).

scale with the friction velocity and the kinematic viscosity. A statistically stationary
solution is obtained after 30 dimensionless time units, and thereafter statistics were
sampled during 15 additional time units. The time is normalized with the friction velocity
and channel half-width. The LES results are compared to filtered DNS data, and all the
presented results are averaged in the homogeneous directions.

The DNS is performed with the same computational code as used in the LES sim-
ulations. The computational grid resolution is (256,193,192) as used by Moser, Kim &
Mansour (1999). The DNS data fields are filtered using the commutative filter functions.
In the figures, it is only every third grid point in the filtered DNS that are plotted to
make the comparison between the LES and DNS clearer.

7. Results

Figure 3 shows mean velocity profiles from simulations using different RSFS models and
different grid resolutions. The filter width is fixed, while the grid resolution is increased.
The goal is to obtain a grid-independent LES solution so that the behavior of turbulence-
closure models can be evaluated. The changes in the predicted mean velocity profiles as
the grid resolution is increased are only minor, indicating that the LES solutions are
nearly converged. The mean velocities predicted by the DSM are much higher than the
filtered DNS results. The DMM improves the results slightly, while the best agreement
with the filtered DNS data is predicted by the DRM (N=5). This shows the need for a
RSFS model when a smooth explicit filter function is applied.

The streamwise velocity fluctuations in figure 4 show the same trend as the mean
velocity profiles. However, the differences in the results as the grid is refined are slightly
larger than for the mean velocity. The DSM shows the largest overprediction of the peak
streamwise velocity fluctuations. The peak value decreases slightly as the grid is refined.
This is also observed for the DMM and the DRM (N=5). It should be noted that the
DRM actually predicts a peak value that is lower than the DNS data. This is very unusual
in LES, because most models will overpredict the streamwise velocity fluctuations and
underpredict the wall-normal and spanwise fluctuations. However, the wall-normal and
spanwise velocity fluctuations shown in figure 4 are even further underpredicted when
applying DRM (N=5) compared to the other two models.

The modeled shear stresses are shown in figure 5. It is a well-known problem that the
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rections. o: filtered DNS, - : DSM (64,49,48), ---- : DSM (128,97,96), --- : DMM
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FIGURE 5. Modeled shear stress, 712, using different turbulence-closure models. o: filtered DNS,
w- : DSM (64,49,48),o---- : DSM (128,9re ,96), H --- : DMM (64,49,48)b f....... : DMM
(128,97,96),------: DRM (N=5) (64,49,48), and ---- : DRM (N=5) (128,97/,96).

DSM does not predict sufficient shear stress in the near-wall region (Baggett, Jimenez
& Kravchenko 1997). As shown in the figure, the DSM predicts the lowest peak values,
while the largest are produced by the DRM (N=5). The modeled shear stress increases
when the level of reconstruction is increased. However, the contribution from the DSM

does not change much between the different simulations; the peak value is approximately
the same. The increase of modeled shear stress is therefore almost entirely due to the
RSFS model. The peak value of the modeled shear stress is approaching the filtered
DNS data as the level of reconstruction is increased. Towards the center of the channel,
the high level reconstruction model overpredicts the shear stress when compared to the
filtered DNS data.
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8. Discussion and conclusions

The true LES approach is investigated in turbulent channel flow using commutative fil-
ter functions in all three spatial directions. In the true LES approach, a grid-independent
solution to the filtered governing equations is obtained. The LES solution depends upon
the explicit filter width used, but is independent of the computational grid. A compu-
tational code using an energy-conserving fourth-order finite-difference scheme is applied
and fourth-order commutative filters are used. Simulations of turbulent channel flow were
performed at Re, = 395. The explicit filter width was kept fixed while the computational
grid was refined, to obtain a grid-independent solution. The results using two different
grid resolutions show only minor differences, indicating that the LES solutions are nearly
converged. The explicit filtering also reduces the numerical errors that are associated
with the high-wavenumber portion of the spectrum when using non-spectral methods.
Therefore, explicit filtering in LES, using high-order commutative filters, results in a
numerically-clean environment where turbulence-closure models can be investigated in
grid-independent LES solutions. This could not be performed using the traditional LES
approach, since the contribution from the SFS models decreases as the computational
grid is refined.

The turbulence-closure models investigated are the DSM, DMM and DRM. The mod-
els are compared to filtered DNS data for mean velocity profiles, velocity fluctuations,
and modeled shear stresses. The mean velocity profiles and the streamwise velocity fluc-
tuations improve as the level of reconstruction increases. The closest agreement between
the LES results and the filtered DNS data, in this study, is obtained by the level of
reconstruction of five (DRM, N=5).

The poor agreement between the filtered DNS results and the DSM shows the need
for RSFS models when using a smooth (in spectral space) explicit filter function. The re-
sults predicted by the models investigated show a distinct improvement in the predicted
quantities, when compared to filtered DNS results, as the level of reconstruction is in-
creased. These improvements are probably due to the increase of modeled shear stress
in the near-wall region. The DSM is known not to predict sufficient shear stress in the
near-wall region, and as the level of reconstruction is increased so is the modeled shear
stress. The increase is almost entirely due to the RSFS model, since the contribution
from the DSM does not change significantly.
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